ON SKEW SYMMETRIC OPERATORS WITH EIGENVALUES
نویسندگان
چکیده
منابع مشابه
On Skew-Symmetric Games
By resorting to the vector space structure of finite games, skew-symmetric games (SSGs) are proposed and investigated as a natural subspace of finite games. First of all, for two player games, it is shown that the skew-symmetric games form an orthogonal complement of the symmetric games. Then for a general SSG its linear representation is given, which can be used to verify whether a finite game...
متن کاملOrthogonal and Skew-Symmetric Operators in Real Hilbert Space
In the theory of traces on operator ideals, it is desirable to treat not only the complex case. Several proofs become much easier when the underlying operators are represented by real matrices. Motivated by this observation, we prove two theorems which, to the best of our knowledge, are not available in the real setting: (1) every operator is a finite linear combination of orthogonal operators,...
متن کاملThe Riesz Decomposition Theorem for Skew Symmetric Operators
An operator T on a complex Hilbert space H is called skew symmetric if T can be represented as a skew symmetric matrix relative to some orthonormal basis for H. In this note, we explore the structure of skew symmetric operators with disconnected spectra. Using the classical Riesz decomposition theorem, we give a decomposition of certain skew symmetric operators with disconnected spectra. Severa...
متن کاملEigenvalues for Radially Symmetric Non-variational Fully Nonlinear Operators
In this paper we present an elementary theory about the existence of eigenvalues for fully nonlinear radially symmetric 1-homogeneous operators. A general theory for first eigenvalues and eigenfunctions of 1-homogeneous fully nonlinear operators exists in the framework of viscosity solutions. Here we want to show that for the radially symmetric operators (and one dimensional) a much simpler the...
متن کاملOn skew-symmetric differentiation matrices
The theme of this paper is the construction of finite-difference approximations to the first derivative in the presence of Dirichlet boundary conditions. Stable implementation of splitting-based discretisation methods for the convectiondiffusion equation requires the underlying matrix to be skew symmetric and this turns out to be a surprisingly restrictive condition. We prove that no skewsymmet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Mathematical Society
سال: 2015
ISSN: 0304-9914
DOI: 10.4134/jkms.2015.52.6.1271